20,773 research outputs found

    Thermal conductivity of doped La2CuO4\rm\bf La_2CuO_4 as an example for heat transport by optical phonons in complex materials

    Full text link
    We investigate the phonon thermal conductivity κph\kappa_{\mathrm{ph}} of doped La2CuO4\rm La_2CuO_4 based on out-of-plane thermal conductivity measurements. When room temperature is approached the temperature dependence of κph\kappa_{\mathrm{ph}} strongly deviates from the T−1T^{-1}-decrease which is usually expected for heat transport by acoustic phonons. Instead, κph\kappa_{\mathrm{ph}} decreases much weaker or even increases with rising temperature. Simple arguments suggest that such unusual temperature dependencies of κph\kappa_{\mathrm{ph}} are caused by heat transport via dispersive optical phonons

    Intestinal epithelial responses to Salmonella enterica serovar Enteritidis: Effects on intestinal permeability and ion transport

    Get PDF
    Salmonella infection of chickens that leads to potential human foodborne salmonellosis continues to be a major concern. Chickens serve as carriers but, in contrast to humans, rarely show any clinical signs including diarrhea. The present investigations aimed to elucidate whether the absence of diarrhea during acute Salmonella enterica serovar Enteritidis (Salmonella Enteritidis) infection may be linked to specific changes in the electrophysiological properties of the chicken gut. Immediately after slaughter, intestinal pieces of the mid-jejunum and cecum of either commercial broiler or specific pathogen-free (SPF) chickens were mounted in Ussing chambers in 2 separate experimental series. Living Salmonella Enteritidis (3 × 109) or Salmonella Enteritidis endotoxin (20 mg/L), or both, were added to the mucosal side for 1 h. In both experimental series, the Salmonella infection decreased the trans-epithelial ion conductance Gt (P < 0.05). In the jejunum of SPF chickens, there was also a marked decrease in net charge transfer across the epithelium, evidenced by decreased short-circuit current (Isc, P < 0.05). Interestingly, the mucosal application of Salmonella endotoxin to the epithelial preparations from jejunum and cecum of SPF chicken had an effect similar to living bacteria. However, the endotoxin had no additional effect on the intestinal function in the presence of bacteria. The decreasing effect of Salmonella and or its endotoxin on Gt could be partly reversed by serosal addition of histamine. To our knowledge, this is the first study to address the functional response of native intestinal epithelium of chicken to an in vitro Salmonella infection. For the first time, it can be reported that intestinal ion permeability of chicken decreases acutely by the presence of Salmonella. This type of response could counteract ion and fluid secretion and may thus, at least in part, explain why chickens do not develop overt diarrhea after Salmonella infection

    Multiloop Manual Control of Dynamic Systems

    Get PDF
    Human interaction with a simple, multiloop dynamic system in which the human's activity was systematically varied by changing the levels of automation was studied. The control loop structure resulting from the task definition parallels that for any multiloop manual control system, is considered a sterotype. Simple models of the human in the task, and upon extending a technique for describing the manner in which the human subjectively quantifies his opinion of task difficulty were developed. A man in the loop simulation which provides data to support and direct the analytical effort is presented

    QC-DMRG study of the ionic--neutral curve crossing of LiF

    Full text link
    We have studied the ionic--neutral curve crossing between the two lowest ^1 Sigma^+ states of LiF in order to demonstrate the efficiency of the quantum chemistry version of the density matrix renormalization group method (QC-DMRG). We show that QC-DMRG is capable to calculate the ground and several low-lying excited state energies within the error margin set up in advance of the calculation, while with standard quantum chemical methods it is difficult to obtain a good approximation to Full CI property values at the point of the avoided crossing. We have calculated the dipole moment as a function of bond length, which in fact provides a smooth and continuous curve even close to the avoided crossing, in contrast to other standard numerical treatments.Comment: 10 pages, 6 figure

    Magnon Heat Conductivity and Mean Free Paths in Two-Leg Spin Ladders: A Model-Independent Determination

    Full text link
    The magnon thermal conductivity κmag\kappa_{\mathrm{mag}} of the spin ladders in Sr14Cu24−xZnxO41\rm Sr_{14}Cu_{24-x}Zn_xO_{41} has been investigated at low doping levels x=0x=0, 0.125, 0.25, 0.5 and 0.75. The Zn-impurities generate nonmagnetic defects which define an upper limit for lmagl_{\mathrm{mag}} and therefore allow a clear-cut relation between lmagl_{\mathrm{mag}} and κmag\kappa_{\mathrm{mag}} to be established independently of any model. Over a large temperature range we observe a progressive suppression of κmag\kappa_{\mathrm{mag}} with increasing Zn-content and find in particular that with respect to pure Sr14Cu24O41\rm Sr_{14}Cu_{24}O_{41} κmag\kappa_{\mathrm{mag}} is strongly suppressed even in the case of tiny impurity densities where lmag≲374l_{\mathrm{mag}}\lesssim 374~{\AA}. This shows unambiguously that large lmag≈3000l_{\mathrm{mag}}\approx 3000~{\AA} which have been reported for Sr14Cu24O41\rm Sr_{14}Cu_{24}O_{41} and La5Ca9Cu24O41\rm La_{5}Ca_9Cu_{24}O_{41} on basis of a kinetic model are in the correct order of magnitude

    Campylobacter jejuni colonization promotes the translocation of Escherichia coli to extra-intestinal organs and disturbs the short-chain fatty acids profiles in the chicken gut

    Get PDF
    For a long time Campylobacter was only considered as a commensal microorganism in avian hosts restricted to the ceca, without any pathogenic features. The precise reasons for the symptomless chicken carriers are still unknown, but investigations of the gastrointestinal ecology of broiler chickens may improve our understanding of the microbial interactions with the host. Therefore, the current studies were conducted to investigate the effects of Campylobacter jejuni colonization on Escherichia coli translocation and on the metabolic end products (short-chain fatty acids, SCFAs). Following oral infection of 14 day old broiler chickens with 1 × 108 CFU of Campylobacter jejuni NCTC 12744 in two independent animal trials, it was found that C. jejuni heavily colonized the intestine and disseminate to extra-intestinal organs. Moreover, in both animal trials, the findings revealed that C. jejuni promoted the translocation of E. coli with a higher number encountered in the spleen and liver at 14 days post infection (dpi). In addition, Campylobacter affected the microbial fermentation in the gastrointestinal tract of broilers by reducing the amount of propionate, isovalerate, and isobutyrate in the cecal digesta of the infected birds at 2 dpi and, at 7 and 14 dpi, butyrate, isobutyrate, and isovalerate were also decreased. However, in the jejunum, the C. jejuni infection lowered only butyrate concentrations at 14 dpi. These data indicated that C. jejuni may utilize SCFAs as carbon sources to promote its colonization in the chicken gut, suggesting that Campylobacter cannot only alter gut colonization dynamics but might also influence physiological processes due to altered microbial metabolite profiles. Finally, the results demonstrated that C. jejuni can cross the intestinal epithelial barrier and facilitates the translocation of Campylobacter itself as well as of other enteric microorganisms such as E. coli to extra-intestinal organs of infected birds. Altogether, our findings suggest that the Campylobacter carrier state in chicken is characterised by multiple changes in the intestinal barrier function, which supports multiplication and survival within the host

    Conserved Aspartate Residues and Phosphorylation in Signal Transduction by the Chemotaxis Protein CheY

    Get PDF
    The CheY protein is phosphorylated by CheA and dephosphorylated by CheZ as part of the chemotactic signal transduction pathway in Escherichia coli. Phosphorylation of CheY has been proposed to occur on an aspartate residue. Each of the eight aspartate residues of CheY was replaced by using site-directed mutagenesis. Substitutions at Asp-12, Asp-13, or Asp-57 resulted in loss of chemotaxis. Most of the mutant CheY proteins were still phosphorylated by CheA but exhibited modified biochemical properties, including reduced ability to accept phosphate from CheA, altered phosphate group stability, and/or resistance to CheZ-mediated dephosphorylation. The properties of CheY proteins bearing a substitution at position 57 were most aberrant, consistent with the hypothesis that Asp-57 is the normal site of acyl phosphate formation. Evidence for an alternate site of phosphorylation in the Asp-57 mutants is presented. Phosphorylated CheY is believed to cause tumbling behavior. However, a dominant mutant CheY protein that was not phosphorylated in vitro caused tumbling in vivo in the absence of CheA. This phenotype suggests that the role of phosphorylation in the wild-type CheY protein is to stabilize a transient conformational change that can generate tumbling behavior

    Ash grains of the 1991 Mt. Pinatubo eruption as a tracer in Rose Bengal stained deep sea agglutinated foraminifera: How old is Freddy?

    Get PDF
    The use of volcanic ash particles (including dark-coloured grains) by agglutinated foraminifera that survived the 1991 eruption of Mt Pinatubo volcano provides a useful tracer to help determine growth rates and longevity in the deep sea. In the case of a specimen of Cyclammina pusilla Brady, the rate of chamber addition in this Rose Bengal stained sub-adult individual is three chambers over a timespan of five and one-half years
    • …
    corecore